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The convective Casson fluid flow past a Riga plate is investigated theoretically. The flow
properties are elucidated through the analytical solutions of transport equations which are
acquired by adopting the Laplace transform technique. This study mainly focuses on nonli-
near flow characteristics under radiation, permeability and the wall parallel Lorentz force.
The positive modified Hartmann number refers to the aiding flow which enhances the flow
speed. The comparison between Newtonian and non-Newtonian fluid flow subject to the
wall parallel Lorentz force has also been done graphically. Further, the results of this Casson
fluid flow model correlated with the vertical flow under buoyancy effect.
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1. Introduction

Yield-pseudo plastic materials generate a nonlinear flow curve together with particular yield
stress. This type of material displays an infinite rate of shear with low apparent viscosity; much
less (approaches to zero) shear rate is noticed at infinite apparent viscosity. The Casson fluid
model associated with this viscoplastic behavior is defined as a shear thinning non-Newtonian
fluid. In many industrial processes, this is used to expound the shear stress and shear rate
characteristics of the fluid flow pertaining to yoghurt, tomato puree, food stuffs and biological
materials (Chhabra and Richardson, 1999). Due to the high consistency of non-Newtonian fluids,
they are processed under laminar flow conditions. A pseudo-plastic fluid exhibits a decrease in
viscosity with the increasing rate of shear. Paints, printing inks and disperse systems are the
most renowned examples of this kind of flow behavior. However, when the rate of shear is less,
the poor flow speed is encountered. Because of this fact, pseudo plasticity is somehow unenviable
(Cross, 1965). The yield stress is the more favourable quantity for the shear thinning fluids. That
being so, the viscoplastic fluids proffered the higher deformation rate.
The Casson fluid model was invented by Casson who has formulated the constitutive equation

which is reasonably successful in describing the flow curves for suspension of pigments in Silicon
suspension and printing inks. On account of its real time usages, much attention has been given
to this model recently. Exact solution of the Casson fluid flow past an oscillating vertical plate
with Newtonian heating was obtained by Hussanan et al. (2014). It was found that higher
Prandtl number regulated the flow separation. Numerical simulation of the Casson flow through
a stenosed artery was done by Venkatesan et al. (2014).
At high temperature circumstances, thermal radiation has significant role in changing me-

chanical properties of complex non-Newtonian fluids. Radiation is also a regulating element of
thermal energy in industrial processes. The Casson fluid flow along with suction or blowing and
thermal radiation at a stretching surface exhibits high temperature for an elevation in the radia-
tion parameter; likewise the stagnation flow displays the enhanced heat transfer rate (Pramanik,
2014; Ramesh et al., 2016).
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Boundary layer control is essentially important, when the fluid flow acts differently than its
usual characteristics. Suction, blowing and motion of the wall are active control methods which
have the substantial impact on the flow pattern. These classical methods delay the boundary
layer separation from the surface. This irregular flow behaviour can be controlled by electroma-
gnetism, which offers powerful practical flow control due to high electrical conductivity of the
material (Dubovikova et al., 2014). The external magnetic field already has high influence on the
high electrical conductivity fluids in MHD fluid flow control. In the case of weakly conducting
fluids, very less amount of current produced by the external magnetic field. Consequently, an
external electric field has to be applied to attain convincing boundary layer control (Magyari
and Pantokratoras, 2011).

A charged particle in a crossed electric and magnetic field experiences the flow by control-
ling the boundary layer growth. Gailitis and Lielausis from physics institute at Riga designed
an electromagnetic control system which is a span wise alternate arrangement of electrodes and
permanent magnets. This actuator is termed as the Riga-plate. The mixed convection study on
the Riga-plate was performed by Magyari and Pantokratoras (2011) under the Lorentz force in
the direction of the free stream velocity and opposite to it. The boundary layer equations were
solved numerically by the finite difference method. It was concluded that the aiding flow range
shoot up the velocity and the opposing flow range exhibits the velocity drop. Pantokratoras and
Magyari (2009) focused on the effects of the wall parallel Lorentz force on a natural convec-
tive EMHD flow. On the other hand, Ganesh Kumar et al. (2017) studied the mass transfer
characteristics of three dimensional flows.

Many recent studies on the Riga-plate contributed in the field of nanoscience. Specifically, the
behavior of squeezed nanofluid flow over a Riga-plate subject to melting heat transfer, viscous
dissipation and heat generation/absorption manifest the stronger momentum boundary layer
for uplifted modified Hartmann number; whereas the squeezed flow with convective boundary
conditions encounter a drop in velocity distribution (Hayat et al., 2017a,b). Most of the investi-
gations centralized their priority to numerical simulation, owing to the complexity in deriving
the exact solution. Recently, authors (Ahmad et al., 2016, 2017; Abbas et al., 2016; Hayat et
al., 2016) who constructed the physical model on Riga-plate were focused only on numerical
solutions.

Many mathematical models addressed some critical issues in handling errors while the nu-
merical evaluation has been carried out. In this context, obtaining the exact solution to the
physical problem is the distinctive feature of this study. Hari and Patel (2016) and Kumar et al.
(2016) acquired the exact solution of convective fluid flow over an oscillating and moving porous
plate, respectively. No evaluation for the exact solution has been made for the Casson fluid flow
over a permeable Riga-plate in the vertical sense.

The unique aspect of the present investigation is the analysis of some physical insight into
the Casson flow mechanism over a moving vertical Riga-plate. The time dependent rheological
characteristics measured under thermal radiation and permeability of the porous medium. A
typical comparison between Newtonian and non-Newtonian fluid flow past the Riga-plate and
validation of evaluated results with the already published work has also been performed.

2. Mathematical analysis

Consider the laminar buoyancy driven Casson fluid flow over a permeable impulsively started
semi-infinite vertical Riga-plate. Assume that the plate is at rest initially. Hence, it is evident
that the fluid temperature and concentration remain the conditions at the surroundings. The
plate suddenly starts to accelerate from repose vertically upwards to gain a constant speed u0
at t′ > 0. This impulsive motion results in the velocity, temperature and concentration. At



Electromagnetic and radiative Casson fluid flow... 989

this time level, the temperature of the plate raises to T ′w(> T
′
∞) and the concentration at the

vicinity of the plate increases toC ′w(> C
′
∞). Eventually, the fluid encounters the heat and mass

transfer near the wall. For the case that the flow is far away from the plate, the temperature and
concentration decline to free stream conditions and the velocity gradually drops to zero. The
fluid motion is taken along the x direction vertically, and the y direction is normal to the plate.
The velocities u and v are described along the vertical and horizontal directions respectively.
The schematic representation is shown in Fig. 1. The effect of viscous dissipation is negligible
in the energy balance equation. The stream-wise direction is insignificant in radiative flux and
scattering is neglected.

Fig. 1. (a) Schematic representation of the flow model, (b) arrangement of electrodes and magnets in
the Riga-plate

The expression for the flow configuration of the Casson fluid is defined by a constitutive
relation (Makanda et al., 2015; Arthur et al., 2015; Raju et al., 2016; Ullah et al., 2016)

τij =
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Here, π′ = eijeij and eij is the (i, j)-th component of the shear rate. πc is the critical value of π
′

concerned with the model. µB is the plastic dynamic viscosity and Py is the yield stress of the
fluid.

The governing boundary layer equations of the mathematical model that encompasses the
above assumptions, the constitutive equation and Boussinesq approximation can be expressed
as
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Suitable initial and boundary conditions of the problem are

{t′ ¬ 0, u = 0, T ′ = T ′∞, C ′ = C ′∞} for all y

{t′ > 0, u = u0, T ′ = T ′w, C ′ = C ′w} for y = 0

{u→ 0, T ′ → T ′∞, C ′ → C ′∞} as y →∞
(2.3)

where β = µB
√
2πc/Py is the Casson parameter, ν is the kinematic viscosity, g is the gravitational

acceleration, β∗ is the thermal expansion coefficient, β′ is the volumetric coefficient of mass
diffusion, J0 is the current density, M0 is the magnetization of magnets, l is the width of the
magnets and electrodes, k is the permeability, α is the thermal diffusivity, Cp is the specific heat,
qr is the radiative flux, D is the mass diffusion rate, ρ is the density, u, T

′, C ′ and t′ are the
dimensional velocity, temperature, concentration and time, respectively.
In the energy balance equation, ∂qr/∂y denotes the change in the radiative flux of the non-

-scattering medium in the direction normal to the plate. According to (England and Emery,
1969; Brewster, 1992; Pattnaik et al., 2017), this can be expressed as

∂qr
∂y
= −4a∗σ(T ′∞

4 − T ′4) (2.4)

where a∗ is the absorption coefficient, σ is the Stefan Boltzmann constant.
The temperature difference in the flow is insubstantial such that T ′4 can be written as a

linear function of T ′ using the Taylor series approximation about T ′∞ (Ibrahim and Mankinde,
2011)

T ′
4 ≃ 4T ′∞

3
T ′ − 3T ′∞

4
(2.5)

Using (2.4) and (2.5) in (2.2)2, the energy equation reduces to
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Non dimensional quantities employed on the coupled in partial differential equations (2.2)1,3,
(2.3), and (2.6) are taken as
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where U , T , t and Y are the dimensionless velocity, temperature, time and spatial coordinate
along the transverse direction respectively. Gr, Gc, Pr, Sc, K, P , N and κ are the thermal Gra-
shof number, mass Grashof number, Prandtl number, Schmidt number, permeability parameter,
modified Hartmann number, radiation parameter and thermal conductivity, respectively.
Non-dimensional forms of (2.2)1,3, (2.3), and (2.6) are given by
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Appropriate initial and boundary conditions are

{t ¬ 0, U = 0, T = 0, C = 0} for all Y

{t > 0, U = 1, T = 1, C = 1} for Y = 0

{U → 0, T → 0, C → 0} as Y →∞
(2.9)

Equations (2.8) together with the initial and boundary conditions (2.9) are transformed by
employing the Laplace transform, and the flow properties are retrieved in terms of Y, t while
using an inverse transform on the transformed equations. The expressions which demonstrate
the flow behavior are obtained as follows:
— mass diffusion
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(2.10)

— temperature distribution
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— velocity distribution

U(Y, t) = F1(Y, t) + F2(Y, t) + F3(Y, t) + F4(Y, t) (2.12)
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The expressions for Nusselt and Sherwood numbers are given by
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The skin friction coefficient is given by
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3. Results and discussion

Behaviour of the flow is illustrated through expressions (2.10)-(2.14) based on the values procured
from MATLAB programming corresponding to variations in Y . Magyari and Pantokratoras
(2011) explained the aiding and opposing flow at steady state on the Riga-plate. A similar
analysis for a Casson fluid in an unsteady case subject to radiation and permeability leads to
the non-linearity study. Figure 2 discusses the velocity for both aiding and opposing flows. The
positive modified Hartmann number exhibits an increase in the speed of the flow. Physically,
it refers to the fact that the wall parallel Lorentz force is acting along the uniform mainstream
velocity. Whereas, the opposing flow decelerates the fluid flow due to the resistance caused by the
increased viscosity. Typically, the reverting case occurs in opposite to the mainstream velocity.
Based on the porous medium structure, the velocity distribution has been enhanced for higher
values of the permeability parameter. This is because of the size of pores or the amount of pores
present in the porous medium which are increased and which results in the bulk fluid motion,
while improving permeability parameter. Radiation leads to a drop in the energy level which,
in turn, displays the reduction in the velocity boundary layer. The resistance in the fluid flow is
noticed, when the Prandtl number values are increased.
Figure 3a demonstrates the impact on the velocity distribution with fixed values of Pr = 7.2,

N = 7, K = 0.3 and P = 2.5. A rise in these values increases the velocity field. This is because
of the temperature and concentration difference in the fluid respectively. The Casson parameter
describes the relation between viscosity and yield stress of the fluid. By increasing the viscosity,
an elevation in the Casson parameter is attained. Hence, higher values of the Casson parameter
results in a thicker momentum boundary layer. For a large time level, the impulsive motion of the
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Fig. 2. Impact of N , P , Pr and K on the velocity field

Fig. 3. (a) Influence of t, Gr, Gc, S and Sc on velocity distribution. (b) Effects of t, N and Pr on
temperature distribution

plate shoots up the velocity. The dimensionless parameter S defines the relation between viscosity
and velocity of the plate with respect to width of the magnets and electrodes. The parameter S
and Schmidt number decrease the flow speed. Chhabra and Richardson (1999) reported that
the physical properties of non-Newtonian fluids were normally temperature dependent. The
temperature difference between the ambience and wall temperature dispersed the heat energy.
Variation in the temperature is also generated by various pertinent parameters considered in
this investigation. It is depicted in Fig. 3b. During energy transport by means of radiation, high
energy electrons drop down to a lower energy level. This leads to the temperature drop. The
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uplifting Prandtl number results in reduction of thermal diffusivity. This affects the thermal
boundary layer by lessening it. The temperature is raised for an elongated time.

Figure 4a elucidates the concentration distribution as a function of Y . By virtue of a lower
molecular diffusion rate with higher values of the Schmidt number, a thinner mass transfer
boundary layer is observed. For the prolonged period of time, the mass diffusion is enhanced.
The rate of heat transfer has been analyzed for various values of the radiation parameter and
Prandtl number in Fig. 4b. These two admissible parameters enhance the energy transport from
high the temperature region to the low temperature region.

Fig. 4. (a) Mass diffusion for various time levels and Schmidt numbers. (b) Nusselt number variations
with respect to N and Pr

Figure 5a presents the mass transfer rate for various values of the Schmidt number. The
Schmidt number which is considered in this study represents various species at low concentration
in air for approximately 25◦C and 1 atm, as specified by Gebhart and Pera (1971), Soundalgekar
and Ganesan (1981), Sc = 0.30(He), 0.78(NH3), 1.24(So2), 2(C7H16). It is found that the mass
transfer rate is escalated for heavier species. Irrespective of the fluid, hike in the values of Sc
enhance the mass transfer rate correlated with variations in the concentration gradient. Figure 5b
reveals that the Newtonian and non-Newtonian fluids follow the same velocity trend while raising
the modified Hartmann number. However, the flow speed is enhanced in the case of a non-
-Newtonian fluid by virtue of high yield stress exerted on the fluid flow.

Gebhart and Pera (1971) unveiled the most intriguing elements of the vertical flow exposed
to natural convection. Results of this analysis obtained for water with Pr = Sc = 7, Gr = Gc
are compatible with the current investigation for the values Pr = Sc = 7, Gr = Gc = 2,
P = N = 0, K,β → ∞. It is illustrated in Fig. 6. As β → ∞, the Casson fluid shows a
Newtonian flow configuration.

Table 1 analyzes the viscous drag of the fluid flow owing to the high radiation parameter.
The flow speed is escalated which results in the lower skin friction coefficient. Resistance to
the flow occurs as the Casson parameter is increased. This phenomenon elevates the friction on
the plate surface. An increase in the permeability parameter produces an increase in the skin
friction coefficient as a consequence that the fluid can easily approach the plate surface through
a large number of pores or bigger pores owing to the fact that the external electrical conductivity
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Fig. 5. (a) Influence of the Schmidt number on the mass transfer rate. (b) Comparison of Newtonian
and non-Newtonian flow speed

Fig. 6. Validation of the solution with Gebhart and Pera (1971)

lessens the viscous drag induced by the fluid flow. It is evident that the skin friction coefficient
has mixed of positive and negative values. In particular, the positive values corresponding to
β = 2.4 with the fixed quantities N = 1, K = 0.7 and P = 1.5 are related to the negative
velocity gradient along the Y -direction. These two values betray the impact of β on Cf . While
improving β from 0.3 to the reasonable amount, the viscosity is lifted up. For this reason, the
fluid momentum decays monotonically with the negative velocity gradient. Thus for higher values
of β, flow separation may be expected. The flow separation pertaining to the influence of the
modified Hartmann number was discussed in detail by Magyari and Pantokratoras (2011). In
order to introduce the distinctive discussion, the Casson parameter has been taken into account.
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Table 1. Skin friction coefficient for different values of N , β, K and P with Pr = 7.2, Sc = 1.24,
Gr = 4, Gc = 2, S = 1.2 and t = 0.8

N β K P Cf

0.1 0.3 0.7 1.5 −1.50219
1 0.3 0.7 1.5 −1.36493
3 0.3 0.7 1.5 −0.96197
1 0.3 0.7 1.5 −1.36493
1 2 0.7 1.5 1.16252

1 4 0.7 1.5 1.63166

10 1 0.3 1.5 −2.44045
10 1 0.5 1.5 −1.17113
10 1 0.7 1.5 −1.00980
5 4 0.7 1.5 −2.07298
5 4 0.7 2 −2.73111
5 4 0.7 3 −4.04739

4. Conclusions

From a theoretical standpoint, the buoyancy driven boundary layer flow of Casson fluid over
a permeable Riga plate has been analyzed meticulously. The study emphasizes the rheological
properties in a detailed manner. The summary of notable results is as follows:

• When the Lorentz force is pointing towards the mainstream velocity, the speed of the flow
is enhanced. It is decaying for the reverting flow.

• The larger permeability enhances the velocity distribution and skin friction coefficient.
• Uplifting radiation parameter decreases the velocity and temperature, and elevates the
viscous drag and Nusselt number.

• Fluid velocity is improved for escalated Gr, Gc and t. On the other hand, the reverse trend
has been noticed for β, Pr, S and Sc.

• Temperature of the fluid is declined considerably for increased Pr. However, it is elevated
with time t.

• Improved Schmidt number shoots up the mass transfer rate although it diminishes the
concentration boundary layer. Mass diffusion is progressively increased for elongated time.

• Increasing the Prandtl number substantially enhances the rate of heat transfer.
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